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The n-Component Cubic Model and Flows: 
Subgraph Break-Collapse Method 
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We specialize to the n-component cubic model the subgraph break-collapse 
method which we recently developed for the Z() 0 model. The cubic model has 
less symmetry than the Potts model, for which the method was originally 
developed, but nevertheless it is still possible to reduce considerably the 
computational complexity of the general Z(2) model, Our recursive algorithm is 
similar, for n = 2, to the break-collapse method for the Z(4) model proposed by 
Mariz and co-workers. It allows the exact calculation for the partition function 
and correlation functions for n-component cubic clusters, with n as a variable, 
without the need to examine all of the spin configurations. An important 
application is therefore in real-space renormalization-group calculations. 
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1. I N T R O D U C T I O N  

The n -componen t  cubic  mode l  was in t roduced  by K i m  et al. (1) in the 
descr ip t ion  of phase  t rans i t ions  in cubic  ra re -ear th  c o m p o u n d s  which have 
s ixfold-degenerate  g round  states (and hence co r re spond  to n = 3 ) .  
A h a r o n y  (2) general ized this mode l  in o rde r  to include q u a d r u p o l a r  in terac-  
tions, besides the d ipo la r  ones. This ex tended  cubic  model ,  which we will 
hencefor th  call for s implici ty  the cubic  model ,  is a discrete version of the 
con t inuous  n - componen t  spin model .  Since its in t roduc t ion ,  the cubic 
mode l  has been s tudied by several  methods .  (3 lo~ It  conta ins  m a n y  inter-  
est ing l imit ing cases (e.g., self-avoiding walks,  sp in - l / 2  Ising model ,  
the Ashk in -Te l l e r  model ,  and  the Po t t s  mode l )  and  for n = ! and  n = 2 it 
becomes ident ical  to the Ising and  Z(4 )  models ,  respectively.  F o r  a general  
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value of n, the cubic model is a particular case of the Z(2n) model in which 
many values of the pair interaction energy become degenerate, leading to 
only three which are distinct. 

In a recent paper on the Z(2) model (1~) [entitled "The Z(2) model and 
flows" and herein referred to as ZF] we developed a recursive algorithm 
for the calculation of the exact partition function and pair correlation 
functions of Z(2) clusters. These clusters were represented by graphs, the 
vertices and edges of which represented, respectively, the atoms and the 
pair interactions between them. This technique, the subgraph break- 
collapse method (SBCM), is an extension of the SBCM for the Potts 
model (12) which we presented in paper III of the series of papers with the 
general title "Potts model and flows" (herein referred to as PF3). The 
SBCM for the Z(2) model is based on a number of equations--the "graph 
reduction equations," the proofs of which were given in ZF through the use 
of rood-2 flows in graphs. One of these equations, the effective break- 
collapse equation, relates the partition function and correlation functions 
for a graph G to those for the "broken" graphs, "collapsed" graphs, and 
graphs with "frozen edges." These graphs are obtained from G by respec- 
tively deleting, contracting, and fixing the value of the flow in a chosen 
edge f The other graph reduction equations allow the calculation of the 
above-mentioned functions for articulated graphs and graphs in series or in 
parallel. The SBCM provides an efficient way of computing the partition 
function and the correlation functions by applying recursively the graph 
reduction equations, thereby avoiding the time-consuming summation over 
states. 

An alternative method for calculating the above functions is the break- 
collapse method (BCM) of Mariz and co-workers. ~13-15) The latter method 
differs from the SBCM in three main aspects: (i) it only replaces a 
subgraph which is a combination of edges in series and/or in parallel by a 
single effective edge, whereas the SBCM uses a more general subgraph 
replacement; (ii) its break-collapse equation contains graphs with 
"precollapsed" edges instead of "frozen" ones; (iii) with the exception of 
graphs with two vertices, the recursion terminates when all the edges of G 
are precollapsed rather than when just c(G) of them are frozen [here c(G) 
is the number of independent cycles in G]. In ZF precollapsed edges were 
shown to correspond to edges on which the flow can take on several values 
(namely 0, p, 2-/~). Although, therefore, for 2 > 4, the BCM generates less 
graphs in each iteration than the SCBM, it was argued in ZF that for any 
,~ the BCM is still less efficient than the SBCM. The reasons for this are 
twofold: (a) it needs more iterations; (b) for 2 > 4 the determination of the 
weight to be associated with a terminal graph (i.e., graphs with all edges 
precollapsed) is an enumeration problem whose computing time grows 
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exponentially with the number of cycles in the graph. For 2 = 4 a simple 
formula for the weight of a terminal graph is available. 

Here we specialize the above SBCM to the n-component cubic model, 
taking advantage of the high degree of symmetry of its Hamiltonian. In 
particular, the effective break-collapse equation contains a sum of terms 
corresponding to the chosen edge f being frozen with values 0, 2, 
4,..., 2n -2 .  These terms can be naturally grouped together, leading to a 
single term which corresponds to a graph for which the flow on f must be 
even. We call such an edge "even-frozen," and for n = 2 it becomes identical 
with the precollapsed edge introduced by Mariz et al. ~13) in the Z(4) 
algorithm. Unlike the BCM for the Z(2) model, in our algorithm for the 
cubic model the weights of the terminal graphs with all edges even-frozen 
are given by simple formulas for any value of n. Besides not having the 
inconvenience of the BCM mentioned in (b) above, our method allows the 
calculation of correlation functions for cubic clusters for all values of n 
simultaneously through a single application of the SBCM. The BCM has 
been successfuly applied in real-space renormalization-group (RG) calcula- 
tions of phase diagrams and critical exponents (see ref. 15 and further 
references therein) and the SBCM described here can similarly be applied 
to the cubic model. It has already been applied (16) in obtaining the RG 
recursion relations used in the study of criticality in the n-component cubic 
antiferromagnet on the square lattice. 

In Section 2 we introduce the model and summarize previous results 
concerning the partition function ~ and correlation functions (ZF) for 
the Z(2) model. In Section 3 we establish the relationship between the 
cubic model and the Z(2n) model. We also prove that the equivalent vector 
transmissivity (from which one can calculate the correlation functions) 
has only two different components. The graph reduction equations of 
the SBCM are given in Section 4. In Section 5 we describe the SBCM 
algorithm and illustrate it by the example of the Wheatstone bridge graph. 
Finally, our conclusions are presented in Section 6. 

2. M O D E L  A N D  REVIEW OF K N O W N  RESULTS 

In this section we define the model and summarize existing 
results (11'17'18) for the Z(2) model which will be needed in the development 
of the subsequent sections. 

2.1. The Cubic Model  

We consider the n-component cubic model for a graph G with vertex 
set V and edge set E. With each vertex i of V we associate an n-component 

822/58/5-6-18 



1062 de Magalhfies and Essam 

vector which can point in one of the 2n directions (positive and negative) 
of the Cartesian axes in an n-dimensional space, i.e., 

S , = ( + l , 0  ..... 0) or (0, + 1, 0,..., 0) or ... (0, 0, 0,..., + 1) (2.1) 

The cubic model can be described by the following dimensionless 
Hamiltonian(2~: 

f i l l (G)  = - ~ [nK~S~.  Sj + nLe(S  i . Sj) 23 
eEg 

(2.2) 

where fl = 1/kB T, and K e and L e a r e  the respective dimensionless coupling 
constants associated with the dipolar and quadrupolar interactions 
between spins S~ and Sj located at the vertices i and j of the edge e. The 
sum in Eq. (2.2) is over all interacting spin pairs on G. 

The Hamiltonian (2.2) may be written also in terms of an n-state Potts 
variable gi (cq=0, 1 ..... n - 1 )  and an Ising spin variable a~ (a i=  _+1) a s  (2) 

f i l l ( G )  = - ~ [nKeaiaj6(g~,  gj) + nLeb(g , ,  gj)] (2.3) 
eEE 

which is a particular case of the (N~, N~) model (corresponding to N~ = 2 
and K1.1 = Kx,0) introduced by Domany and Riedel. ~6) 

2.2. K n o w n  Results  fo r  the  Z(h) M o d e l  

In ZF, a Z(2) cluster is represented by a graph G with vertex set V, 
edge set E, number of vertices v, and number of edges ~. With each vertex 
i of V is associated a state variable ni which can take on one of the Z 
integer values 0, 1,..., Z -  1. The dimensionless Hamiltonian is given by 

f i l l (G)  = ~" h e ( n i -  nj) (2.4) 
eeE 

where n i - n j  is calculated rood-2 and the pair interaction energy is 
independent of the ordering of i and j, so that 

he(Z - g) = he(a ) (2.5) 

The components te(g ) of the Z-dimensional vector transmissivity t e of the 
edge e are defined ~ by 

l e (g)  ~ _ _  ~ e2=ic~fl/Z e he(fl) 

Ze fl=O 
(~ = O, 1 ..... Z -  1) (2.6a) 
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where 

2--1 

Z e =  ~ e -h'(~) ( 2 . 6 b )  
~=o 

Of these ).-components, only 2 = [2/2] (where [ . ]  stands for the integer 
part) are independent, since t~(0) = 1 and te(;t-- ~) = te(C~). 

The partition function Z(G) can be expressed/17'~8) in terms of te(CQ as 

Z(G)=,~'~-~ (.HEze) D(G) (2.7a) 

Here D(G) is the generating function for flows given by 

D(G)=  ~ ]-I t~(cp(e)) (2.7b) 
c, oeF(G) e e E  

where (p(e) is the value of the rood-), flow (0 on the edge e, and F(G) is the 
set of all rood-2 flows on G. Given an arbitrary directing of the edges e E E, 
one can define a rood-2 flow (see, for example, ref. 20) as a function defined 
on E which assigns to each edge e one of the integer values 0, 1,..., 2 -  1 
subject to a "conservation condition" at each vertex ie  V, i.e., the sum of 
the inward flows minus the sum of the outward flows at i is zero rood-2. 

Pair correlation functions can normally be written as the thermal 
average of some function f ( n l -  n2) which depends only on the difference, 
rood-2, of state variables nl and n2. Here 1 and 2 refer to arbitrarily chosen 
vertices (called roots of the graph), and the thermal average can be Fourier 
decomposed as (ZF) 

1 ;  1 
( f (n l - - r /2 ) ) th  . . . .  1 = ~  Z f;_=T=(1, 2; G) (2.8) 

where 

T~(1, 2; G)=- (e-2~i~n~-'~2)/~)th . . . .  1 - -  
N~(1, 2; G) 

(2.9a) 
D(G) 

with 

N~(1, 2; G ) =  ~ 1--[ te(q~(e)) (2.9b) 
~r e~E 

In (2.9b), F~(G) is the set of all rooted mod-2 ~-flows, i.e., of mod-2 flows 
subject to a fixed external flow c~ entering at root 1 and leaving at root 2. 
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Here N(1, 2; G ) =  {N~(1, 2; G), e = 0 ,  1,.,., )~- 1} is called the flow-vector, 
although strictly speaking each of its components is a generating function 
for internal flows having a fixed external flow c~ in at 1 and out at 2. Notice 
that No(l, 2; G) is exactly D(G) given by (2.7b). 

The vector T(1, 2; G)= { T,(1, 2; G), ~=0,1,. . . ,  2 - 1 }  is called the 
equivalent vector transmissivity between the roots 1 and 2 of G, since it is 
equal to the vector transmissivity tefr of a single effective edge between 1 
and 2 having an equivalent Hamiltonian heq(n 1 - n 2 )  given by 

(2.10) 

where C is a constant and Tr' denotes the sum over all possible values of 
ni for all vertices i different from the roots 1 and 2. The replacement of a 
cluster of atoms by a single effective edge connecting just two atoms with 
an effective interaction plays a fundamental role in real-space renormaliza- 
tion-group calculations and also, as we will see later on, in the SBCM. 

In the case of the Potts model we have that 

~he(0 ) for n~=nj 
he(n i -  nj) = [2Ke + hfi0) for n i r  n s (2.11) 

and, therefore, te(cQ=t e for any e C0, where t e is the thermal 
transmissivity [Eq. (2.2) of PF3]  used in many real-space renormalization- 
group calculations (see, for example, ref. 15). For the Potts model, 
Eq. (2.9b) reduces to 

NI(1, 2; G) = N~(1, 2; G) . . . . .  Nx 1(1, 2; G) - N(1, 2; G) 

= ~ F12(2, G')~I  te (2.12a) 
G ' ~ G  e ~ E '  

and 

No(l, 2; G) = D(G) = ~ F(2, G') I1 te (2.12b) 
G'~- -G e ~ E '  

where Ft2(2, G') and F(2, G') are, respectively, the two-rooted and unrooted 
flow polynomials (2~ of the partial graph G' of G. They correspond to the 
respective numbers of proper [i.e., q~(e) r 0 for all e] rooted rood-2 e-flows 
and unrooted flows. 
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3. THE T W O - C O M P O N E N T  EQUIVALENT VECTOR 
T R A N S M I S S I V I T Y  

3.1. Relat ionship between the Cubic Model  and the 
Z (2n )  Model  

For n = 1 and 2 the n-component cubic model is equal to the Ising and 
Z(4) models, respectively. For general n, the cubic model is the particular 
case of the Z(2n) model in which the pair interaction energies h~(c~) 
(c~ = 0, 1 ..... 2n - 1 ) become highly degenerate, namely 

h~(1) = h~(2) . . . . .  h e ( n - l ) = h e ( n + l  ) . . . . .  h e ( 2 n - 1 )  (3.1) 

and where the energy differences are related to the dimensionless coupling 
constants K~ and L e through 

h~(n)  - h~(O) = 2 n K  e (3.2a) 

and 

he(1 ) - he(0) = n ( K ~  + L e )  (3.2b) 

Combining Eqs. (3.1) and (3.2) with the definition (2.6) of te(C0, we arrive 
at only two components of the vector transmissivity which are different: 

and 

t e ( ~ )  --- 

1 --  e - 2nKe 

2nKe ~ te( 1 ) 1 + 2 ( n -  l)et"(Ke+L~)+ e 

1 - 2 e  - . ( K ~ +  Le) Jr- (t --2nKe 

l + 2 ( n - 1 ) e  ntX~+Le)+e  2~'%=-te(2) 

(c~ = 1, 3,..., 2 n -  1) 

(3.3a) 

(c~ = 2, 4,..., 2 n - 2 )  

(3.3b) 

The variables 6(1) and te(2 ) are precisely the respective variables 2~ =Z 
and ~ which appear in the model of Domany and Riedel (6) specialized to 
the cubic Hamiltonian. The two-dimensional vector (6(1), 6(2)) is the 
vector thermal transmissivity of Tsallis et  al. ~1~ used in their renormaliza- 
tion-group calculation of the critical frontier of the ferromagnetic cubic 
model on the square lattice. 
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3.2. The T w o - C o m p o n e n t  Vector  Equivalent Transmissivity 

In this section we prove that, similarly to Eqs. (3.3), only two of the 
2 n -  1 components of the flow vector of the Z(2n) model with a # 0 are 
distinct in the case of the cubic model: 

NI(1,2;G)=N3(1, Z;G) . . . . .  U2n 1(1, 2; G) (3.4a) 

and 

N2(1, 2; G) = N4(1, 2; G) . . . . .  N2, 2(1, 2; G) (3.4b) 

where N~(1, 2; G) is defined in (2.9b) with 

te(~O(e))= te(l ) for odd (p(e) 

te(~O(e))= te(2 ) for even q)(e) 

and 

(3.5a) 

(3.5b) 

1 1 1 1 

2 2 
G z 

(a) (b) 

A ~  -6  

2 2 
0 ~a 

(c) (d) 

Fig. 1. (a) A graph G whose edges are given arbitrary directing, indicated by the arrows. The 
roots 1 and 2 represented by open circles and unrooted vertices by solid circles. (b) An 
arbitrary spanning tree ~ of G and (c) its corresponding path 0 between the roots. By adding 
the flow ~a (d) to unrooted flows, one generates rooted 6-flows. 

le(O ) = 1 (3.5C) 

The equalities (3.4) are related to the fact that, for the Potts model, 
N~(1, 2; G) for a ~ 0 is independent of the external flow a [see Eq. (2.12a)]. 

We first recall that, as shown in the appendix of ZF, one can generate 
the rooted mod-2 a-flows starting from the unrooted rood-2 flows. For this, 
one must choose a spanning tree r on G which then determines a unique 
path 0 which connects the roots 1 and 2. One can then construct a rooted 
mod-2 a-flow by adding, to each of the 2 C(a~ unrooted mod-2 flows, a flow 
~ equal to a on the path 0 from 1 to 2 and zero on all other edges. For 
example, for the graph G of Fig. la and the spanning tree z of Fig. lb, one 
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can generate from the unrooted rood-6 flows shown in the first column of 
Fig. 2 the corresponding rooted rood-6 1-flows and rooted mod-6 3-flows 
drawn in the second and third columns, respectively. These were obtained 
from the unroted mod-6 flows by adding the flow ~6 shown in Fig. ld with 
6 = 1 and ~ = 3, respectively. 

We begin the proof of (3.4) by noting that similarly to the above pro- 
cedure, one can generate the rooted mod-2n (a + 2)-flows contributing to 
N~(1, 2; G) by adding, to each of the rooted mod-2n a-flows which are 
generated by N~(1, 2; G), a flow ~2 equal to 2 on the unique path 0 from 
1 to 2 and zero on all other edges. This provides a bijective mapping 
between the flows of N~(1, 2; G) and those of N~+2(1, 2; G). Notice that for 
2 even (which is the case we are considering here with 2 = 2n), this proce- 
dure cannot change the value of the flow on any edge from odd to even. 

Now let us consider an n-component cubic cluster in which, for nota- 
tional simplicity, we shall assume that t e = t for all edges e. By the above 
construction the powers of t(1) [which are, in the cubic model, associated 
with the odd flows according to Eq. (3.5a)] must be the same for any 
rooted mod-2n a-flow and its corresponding rooted mod-2n ( a +  2)-flow. 
Also, when t(1)=t(2)=t we must regain the Ports model formulas. It 
follows that, since any term [ t (1) ]k[ t (2) ]  l (k, l = 0 ,  1 ..... e) which appears 
in N~(1, 2; G) for the cubic model becomes t k+l in N(1, 2; G) for the Potts 
model, the power of t(2) for corresponding flows is different if and only if 
the power of t is different for the Potts model. Considering that, for a > 0, 
(i) N(1, 2; G) is independent of the external flow for the Potts model, and 
(ii) the addition of the flow ~2 does not change the number of edges with 
odd values of flow, we conclude that the changes in the power of t for 
different mod-2n flows with a fixed number k of edges on which their values 
are odd compensate in such a way as to maintain the same sum. This 
induces a compensation in the powers of t(2) for the cubic model in such 
a way that the term 

Et(1)3 ~ ~ a , [ t (2)3 '  
l - 0  

is the same for both N~(1,2;G) and N~+2(1,2;G ). In the last two 
examples of Fig. 2 we show the compensation between the terms I t ( | ) ]  2 
and [t(1)]zEt(2)] 2 which occur in NI (1 ,2 ;G)  and N3(1,2;G) for the 
3-component cubic model on the graph G of Fig. la. In general, as this 
compensation happens for any power k (k = 0,1,..., e) of t(1), then it 
follows that N~(1, 2; G ) =  N~+2(1 , 2; G), leading thus to Eqs. (3.4). 

The combination of Eqs. (3.4) and (2.9a) shows that the equivalent 
vector transmissivity has only two distinct components. 
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N0(1, 2; G) 

2 

[ t ( 2 ) ]  5 

NI(1,  2; G) 

o~ 

[ t ( 1 ) ] 2 [ t ( 2 ) ]  3 

N3(1, 2; G) 

I 

~=1 

[ t ( 1 ) ] "  ~= 1 I t ( l ) ] =  

3 3 3 ~  2 3 

2 3 

[ t ( 1  )34 [t(1 )]2 [ t ( 2 ) ]  2 

Fig. 2. Examples of unrooted mod-6 flows (first column) and its corresponding rooted 
1-flows (second column) and rooted 3-flows (third column) on the graph G of Fig. la. These 
rooted flows were obtained from the unrooted ones by adding the flow ~ of Fig. ld for 6 = 1 
and 3, respectively. A missing edge indicates that the value of the flow on it is zero. c~ 
represents the external flow in at the root 1 and out at the root 2. To each edge with a 
nonzero even (odd) value of flow is associated a transmissivity t(2) [t(1 )]. Below each e-flow 
the corresponding term contributing to the generating function N~(1, 2; G) is given. 

a = 3 ~  1 

[ t ( 1 ) ] 2 [ t ( 2 ) ]  = 

~=3  

3 

[ t ( 1 ) ]  ~ 

[ t ( 1 ) ]=E t (2 ) ]  ~ 
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4. GRAPH REDUCTION E Q U A T I O N S  OF THE S B C M  

The main purpose of the SBCM is to calculate the flow vector for a 
graph G (and hence the partition function and pair correlation functions) 
in terms of those for "smaller" graphs. Three methods of reducing the size 
of a graph are used in the SBCM: (i) splitting into pieces at articulation 
vertices; (ii) replacement of subgraphs attached at only two vertices by 
effective edges; (iii) removal of (effective) edges through the use of the 
effective break-collapse equation. 

The graph reduction equations for the n-component cubic model 
associated with the above procedures will now be derived from those for 
the Z(2n) model. 

4.1. Spl i t t ing of Ar t iculated Graphs 

Suppose that a two-rooted graph G is composed of two subgraphs G~ 
and G2 which intersect only at the articulation point i (see Fig. 3). Two 
cases can arise: (a) both roots 1 and 2 belong to one of the subgraphs, say 
G1 (Fig. 3a); (b) the root 1 belongs to, say, G1 and 2 is in G2 (Fig. 3b). In 
case (b) if i r 1 or 2, then G1 and G2 are said to be in series. 

(a) Both roots in G1. Equation (3.2) of ZF gives 

N~(1, 2; G)= N~(1, 2; G,) D(G2) (c~ = 0, 1,2) (4.1) 

(b) G1 and G 2 a r e  in series. It follows from (3.3) of ZF that 

N~(1, Z;G)=N~(1, i;G1)N~(i, 2;G2) (c~ = 0, 1,2) (4.2) 

G1 

G2 

~ O 

( 
(a) 

G1 

G2 

O l 

( 
(b) 

GI 

l 

2 
(c) 

Fig. 3. Pictorial representations of two graphs G1 and G 2 which (a, b) share an articulation 
vertex i or (c) are in parallel. In panel (b) the graphs G1 and G 2 are in series. 
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which, for two ordinary edges (G1 = e~ and G 2 = e2) recovers the result of 
Tsallis et al/~~ 

4.2. Parallel  C o m b i n a t i o n  of  Graphs 

Now let us consider a two-rooted graph G with is the union of two 
subgraphs G~ and G 2 which intersect only at roots 1 and 2 (see Fig. 3c). In 
this case, G1 and G2 are said to be in parallel. Using Eqs. (3.4) of ZF and 
Eqs. (3.4) here, we find 

D(G) = D(G1) D(G2) + nU~(1, 2; G~) U~(1, 2; G2) 

+ ( n -  1) N2(1, 2; G~) N2(1, 2; G2) (4.3a) 

N,(1, 2; G) = D(G,) N~(1, 2; G2) + D(G2) N~(1, 2; G~) 

+ (n - 1)IN2(1, 2; G~) N,(1, 2; G2) 

+ N~(1, 2; G~) N2(1, 2; G2)] (4.3b) 

and 

N2(1, 2; G)= D(GI) N2(1, 2; G2)+ D(G2) N2(1, 2; G,) 

+ nN~(1, 2; G~) N~(1, 2; G2) 

+ (n - 2 )  N2(1 , 2; G1) U2(1, 2; G2) (4.3c) 

Equations (4.3) particularized for two ordinary edges el and e2 in parallel 
give 

N~(1,2;G) t l (1)+tz(1)+(n-1)[- t~(Z)t2(1)+t~(1)t2(2)]  
tp(1)-  D(G) - 1 + nt~(1) t2(1) + ( n -  1) t,(2) t2(2 ) 

(4.4a) 

and 

2 ; G )  t l ( 2 )+ t2 (2 )+n t , (1 ) t2 (1 )+ (n -2 ) t , ( 2 ) t2 (2 )  
tp(z)=U2(liG ) - l + n t l ( 1 ) t z ( 1 ) + ( n - 1 ) t l ( 2 ) t 2 ( 2 )  

(4.4b) 

which agrees with the parallel algorithm of Tsallis et al. (1~ 
Equations (4.3) can be written in a factorized form similar to the series 

equation as (ZF) 

N-~(1, 2; G)= N-a(1, 2; a l )  N~(1, 2; G2) (4.5) 
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where the discrete Fourier transforms N~ are 

D(G)=D(G)+nNI(1,2;G)+(n-1)N2(1,2;G) (4.6a) 

N,(1, Z;G)=D(G)-nN~(1,2;G)+(n-1)N2(1,  Z;G) (4.6b) 

and 

N~(1, 2; G)= D(G)-  Nz(1, 2; G) (Vc~r or n) (4.6c) 

When G is a single ordinary edge e connecting 1 and 2, then #~/-N0 is 
equal to the dual variable [t(fl)] D of t(fl) defined for the Z(2) model in 
ref. 18. The dual vector transmissivity for the n-component cubic model is 
therefore given by 

[te(n)]D=____N" 1--nt~(1)+(n--l)te(2)_e 2.~ 
b l+nte(1)+(n-1)te(2)  

(4.7a) 

and for e r  or n 

[te(c0] D =_ NZ~ = 1 -- te(2) = e  ,,(Ke+Ce) (4.7b) 
D l+nte(1)+(n-1)te(2)  

which are, respectively, the variables x~ and x~ used in the model of 
Domany and Riedel (6) specialized to the cubic Hamiltonian. Combining 
Eqs. (4.5) and (4.7), we get the following alternative equation for two 
ordinary edges in parallel: 

[ t , ( / ~ ) ] ~  = [ t , ( / ~ ) ]  ~ [ t~ ( /~ ) ]  ~ ( v ~ )  (4.8) 

4.3. Replacement of a Subgraph by an Effective Edge 

Let us consider a two-rooted graph G which is the union of two sub- 
graphs H and L which intersect at only two vertices, i and j. Furthermore, 
both roots 1 and 2 belong to H (see Fig. 4) with the possibility that i 
and/or j are rooted. When both i and j are rooted, then L and H are in 
parallel and we recover the results of Section 4.2. 

In ZF it was proved, through the use of flows, that one can replace the 
subgraph L by a single effective edge e L having an effective flow vector 
equal to the flow vector of L. This result can be stated for the cubic model 
a s  

N~(1, 2; HwL)=N~(1, 2; H u  eL) (4.9a) 
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H L 

Fig. 4. 

J 
Pictorial representation of a two-reducible graph G = H u L with the roots 1 and 2 

in H. Each subgraph is represented by a half-moon shape. 

with 

N~(i, j; eL) = N~(i, j ;  L) (c~ = 0, 1, 2) (4.9b) 

N~(i,j; eL) can be calculated through the SBCM or by performing the 
partial trace over the internal vertices of L as mentioned in Section 2.2. 
Equation (4.9a) may be repeatedly applied as long as there are further 
subgraphs which satisfy the above conditions on L. Also, the subgraphs 
replaced may themselves contain effective edges. 

The replacement of a subgraph by an effective edge is an essential step 
in the SBCM. The subgraphs to be replaced are considered to be of three 
types: (i) two (effective) edges in series, (ii) two (effective) edges in parallel, 
(iii) subgraphs which are not combinations of series and/or parallel (effec- 
tive) edges. The latter replacement will be called, as in ZF, a nonreducible 
subgraph replacement. The search for suitable subgraphs is performed in 
this order. 

4.4. The  Ef fect ive  Break-Co l lapse  Equat ion 

When no more subgraph replacements can be made, then one must 
apply the effective break-collapse equation. Combining Eq. (3.16) of ZF 
with Eqs. (3.4) here, we get the following effective break-collapse equation 
for the cubic model: 

N~(1, 2; G)=  [Dr N~(1, 2; G~)+ Nl~ffN~(1, 2; G~) 

+(N2~--N~fr) N2"(1,2;f;G) (c~ = 0, 1,2) (4.10a) 
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where 

Ne~'(1, 2;f;  G)= N~o(1, 2;f;  G)+ N~2(1, 2;f;  G)+N~a(I, 2;f;  G) 

+ -.. +N~.2~ 2(1,2;f;G) (4.10b) 

In (4.10a), G~ and G~ are, respectively, the deleted and contracted graphs 
obtained from G by deleting a chosen (effective) edge f and contracting 
it (i.e., identifying the endpoints of f in Gf). Here Deft, N~rr, and N2~rr 
are the components of the flow vector of the (effective) edge f, and 
N~r 2; f ;  G) is the generating function for rooted mod-2n ~ -flows having 
a fixed flow fi in the edge f Such an edge will be called, as in ZF, a frozen 
edge. 

The components of the flow vectors for the deleted and contracted 
graphs are related to N~ through (ZF) 

and 

N~( 1, 2; G f)  = N~o(1, 2; f ;  G) (4.11) 

21~-- 1 

N~(1,2;G~)= ~ N~e(1,2;f;G) (4.12) 
B-O 

In order words, to delete an edge f is equivalent to having a frozen edge 
f on which the flow has value zero, and to contract f is equivalent to 
summing over all possible values of the flow for this edge. 

Now consider the relation between N~ v and the flow vector for G. 
Using the relationship between N~ and N~e [see Eq. (3.10) of ZF] with 
tf(/~) = Necrf particularized for the cubic model, namely 

N~(1, 2; G)= D~rrN~,o(1, 2; f ;  G) 

+ N~err[N:,l(1, 2; f ;  G) + N~,3(1, 2; f ;  G) 

+ ... +N~,2n_l(1,2;f;G)] 

+ Nzerr[N~2(1, 2; f ;  G)+ U~4(1, 2; f ;  G) 

+ ' +X~,zn 2(1, 2; f ;  G)] (4.13) 

and comparing it with Eq. (4.10b), it follows that 

Ne~(1, 2; f ;  G)= N~(1, 2; G)] Ul~r (4.14) 
D e f t  = N 2 e f f  = I 

The right-hand side of Eq. (4.14) is similar to the flow vector 
N~'(1, 2; G) for the Z(4) model defined for the graph G with a chosen edge 
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, , (  ) ~ ~ , f "precollapsed. 13 However, for the Z(4) model, NbC(1 2; G) is the 
generating function for rooted rood-4 c~-flows having value 0 or 2 on the 
edge f (see ZF), while here N2V(1, 2 ; f ;  G) is the generating function for 
rooted rhod-2n c~-flows having value 0, 2, 4,..., 2n - 2 of f In this condition 
f will be called an even frozen edge. 

If f is an ordinary edge, then Eq. (4.10a) recovers a conjectured result 
(C. Tsallis, private communication). 

In the SBCM, Eq. (4.10a) is applied recursively so that the flow vector 
of G may be equal to that with several even frozen edges. In this case, N2 ~ 
satisfies an effective break-collapse equation similar to Eq. (4.10a). The 
latter equation is applied as many times as needed to arrive at either 
graphs with just two vertices, or graphs with all edges even frozen. For 
such graphs (which we will denote by Ge~), N~(1, 2; Gev) is the number of 
rooted mod-2n c~-flows with the constraint that the flow on all edges must 
be even frozen. Such flows will be called, as in ZF, even rooted mod-2n 
a-flows. Following along the same lines as in the proof of Eqs. (4.2) of ZF, 
one can easily show that 

Nl(1; 2; Ge~) = 0  

N2(1, 2; G~)= nc(G'~)T,2(Gev ) 

D(Ge~) = n c(ae~> 

(4.15a) 

(4.15b) 

(4.15c) 

where e(Gev) is the number of independent cycles in Ge~; YI2(Gev) is 1 if the 
roots are connected and zero otherwise. 

It is worthwhile stressing that, unlike the effective break-collapse 
equation for the Z(2) model, Eq. (4.10a) allows the calculation of the flow 
vector as a function of n rather than for a specified value of n. In the case 
of the Z(2) model, the application of the break-collapse equation generates, 
besides the broken and collapsed graphs, a further 2 -  3 graphs, while in 
the cubic model it generates only one further graph independent of the value 
ofn. 

4.5. Particular Cases 

Now let us show that our graph reduction equations reproduce 
correctly the expected results in different particular cases of the cubic 
model. 

4.5.1. n = l  (Ising Model).  For n = l ,  the vector transmissivity 
has only one component given by [Eq. (3.3a)] 

t~(l) = tanh Ke (4.16) 
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which is the thermal transmissivity te defined for the Ising model with 
coupling constant K~,. Our respective graph reduction equations (4.1), 
(4.2), (4.3a), and (4.3b) reduce, for n = 1, to Eqs. (4.17a), (4.17b), (4.14b), 
and (4.14a) of PF3 particularized for a two-rooted Ising cluster. From 
Eqs. (4.10b) and (4.11) it follows that, for cr 1, 

U~( l ,  2 ; f ;  G)],,= 1 = U~(1, 2; Gf)ln= ~ (4.17) 

which combined with Eq. (4.10a) leads to the effective break-collapse 
equation [see Eqs. (4.13) of PF3] for the Ising model. 

4.5.2. n = 2  (Symmet r ic  Ashkin-Tel ler  M o d e l ) .  Aharony (2) 
showed that, for n = 2, the Hamiltonian of the cubic model [Eq. (2.3)] can 
be written in terms of two coupled Ising variables in the same form as that 
of the symmetric Ashkin and Teller model. (21) The Hamiltonian of the 
latter model is identical to that for the Z(4) model described in Eq. (1) of 
Mariz et aL (13) with coupling constants K1 = K and/s = L/2.  

The components te(1) and te(2) of the vector transmissivity 
[Eq. (3.3)] become, for n = 2, identical to the respective transmissivities tl 
and t 2 defined in Eqs. (2a) and (2b) of Mariz et al., 1~3~ where K~ = K and 
K2 = L/2.  One can easily see that our SBCM graph reduction equations 
reduce, for n = 2, to those derived in ZF for the Z(4) model, as it should 
be. 

4.5.3. K o = L  o (2n-Sta te  Potts Mode l ) .  The case Ke=Le 
corresponds to a 2n-state Potts model with coupling constant 2 n K  e (see 
ref. 2). In this case, Eqs. (3.3) become 

1 - e--2nKe 

te(1) = re(2)-  1 + (2n -- 1)e -2nKe (4.18) 

which is the thermal transmissivity [see Eq. (1) of ref. 22] of a 2n-state 
Potts model. Using the fact that, for the Potts model [see Eq. (2.12a)], 

NI(1, 2; G)=  N2(1, 2; G)=  N(1, 2; G) (4.19) 

one can easily show that our graph reduction equations reproduce the 
expected results (see PF3). 

4.5.4. K o = 0 (n -Sta te  Potts M o d e l ) .  Setting Ke = 0 in Eq. (2.3) 
leads to the Hamiltonian of an n-state Ports model with coupling constant 
nLe.  In this case Eqs. (3.3) become 

t~(1) = 0 (4.20a) 

1 - -  e ~L~ 

te(2) = 1 + ( n  - -  1 ) e  - n L e  - -  t e  (4.20b) 
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where t e is the thermal transmissivity of an n-state Potts model. From Eqs. 
(4.20a) and (3.5a) we conclude that N~(1, 2; G) becomes, in the considered 
case, the generating function for even rooted mod-2n e-flows. From 
conservation of mod-2n flows it follows then, similarly to Eq. (4.15a), that 

NI(1, 2; G)= 0 (4.21) 

Furthermore, for c~=2/3, there is a bijective correspondence between 
the even rooted mod-2n c~-flows and the unrestricted rooted mod-n 
fl-flows obtained by replacing edges with flow 2l by edges with flow l 
(l = 0, 1,..., n -  1). Consequently, in this case 

N2(1, 2; G)=N(1,  2; G) (4.22) 

where N(1, 2; G) is the generating function for the rooted mod-n flows in 
the n-state Potts model. 

Combining relations (4.21), (4.22), and (4.12), one can easily prove 
that, for K e = 0, all our graph reduction equations for D(G) and N2(1, 2; G) 
reduce to those obtained for the Potts model (PF3). 

5. S B C M  FOR THE n - C O M P O N E N T  CUBIC  M O D E L  

In this section we describe the modifications of the SBCM algorithm 
for the Potts model (PF3) necessary for treating the cubic model. We 
also illustrate the SBCM for the n-component cubic model using the 
Wheatstone bridge cluster. 

5.1. The S B C M  Algor i thm 

The SBCM algorithm for the Potts model described in PF3 contains 
a recursive procedure T which executes the operations of splitting into 
pieces, replacement of (effective) edges in series or in parallel by a single 
elective edge, and the operation of nonreducible subgraph replacement as 
long as possible. It then applies the effective break-collapse equation. The 
use o f  this equation as well as the nonreducible subgraph replacement 
require calls to T; thus, the algorithm is recursive. The terminal condition 
for the procedure arises when a graph with only two vertices is arrived at, 
in which case the equivalent transmissivity is calculated by the parallel 
reduction equation. The SBCM algorithm for the cubic model differs from 
that for the Potts model in the following respects: 

(i) Instead of associating to each edge e =  [i , j]  the numerator Ne 
and denominator De of the effective thermal transmissivity of e, we 
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associate the components No(i, j; e), N~(i, j; e), and N2(i , j; e) of the 
effective flow vector of the edge e. 

(ii) The effective break-collapse equation must be replaced by 
Eq. (4.10a), which demands the calculation of N2~'(1, 2;f ;  G). This may be 
accomplished by replacing step (IId4) of the algorithm by a loop with a 
further call to T for the graph G with an even frozen edge f The series and 
parallel reduction equations work without modification provided we set 
tr(0) = tf(2)= 1 and tr(1)=0. 

(iii) In the selection of the (effective) edge to be deleted and contrac- 
ted [step (Ildl) of the algorithm], this must now not be an even frozen 
edge. 

(iv) A further terminal step must be added before the terminal condi- 
tion mentioned in (Ile) of PF3. This refers to a graph with more than two 
vertices, the edges of which are all even frozen. In this case, there is no need 
for further applications of the effective break-collapse equation, since the 
flow vector of the current graph is given by Eqs. (4.15). 

5.2. An I l lustrat ion of  the  S B C M  

Now let us illustrate the SBCM by calculating the equivalent vector 
transmissivity of the Wheatstone bridge graph G of Fig. 5. We consider 
only the case when all edges have the same vector transmissivity t. 

Since G has five edges, it is necessary to apply the effective break- 
collapse equation [Eq. (4.10a)] five times, arriving thus at the graph Gev of 
Fig. 5, whose edges are all even frozen. Figure 5 shows the "tree" of graphs 
generated in the SBCM where the edges to be deleted and contracted were 
chosen in the following sequence: es, e2, ex, e3, and e4. For the sake of 
simplicity, the further graphs resulting from the replacement of edges 
(which can be even frozen or not) in series and/or parallel by effective 
edges are not included in Fig. 5. The branching into two graphs refers to 
the splitting of articulated graphs, while the one into three graphs results 
from the application of the effective break-collapse equation. The effective 
flow vectors for the terminal graphs shown in Fig. 5 are the following: 

N~(1, 2; Gl l )=n  (~=0,  2) (5.1a) 

NI(1, 2; Gll ) = 0 (5.1b) 

N~(1,2;Glz)=N~(1,2;Gev)=n 2 (e=0 ,  2) (5.2a) 

NI(1, 2; G12)= Na(1, 2; Gev) = 0 (5.2b) 

N ~ ( 1 , 2 ; G m ) = l + ( n - 1 ) t ( 2 )  (c~=0, 2) (5.3a) 

822/58/5-6-[9 
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G= 

/ / 

G I ~  t G2 

/ ' x  

0"0 
G4 

1 d3@l 
e 2 

2 
\ ~ G3 

/ t , , ,  

/ ' x  

G6 

dx 

/ , , ,  ,q',, 

G8 G 9 

/ , , ,  ,q,, 
z>za  

G10 G11 GI: Gev 

Fig. 5. A schematic representation of the SBCM calculation of N(1, 2; G) for the Wheatstone 
bridge graph. The further steps are not shown for graphs which are combinations of series 
and/or parallel edges. The splitting of an articulated graph is indicated by the sign x between 
the two subgraphs. The crossed line represents an even frozen edge whose vector 
transmissivity is given by t (0)=t(2)= 1 and t(1)=0. The vector transmissivity associated 
with any other edge is t. 
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Nj(1, 2; Glo) = 0 

N~(1,2;G9)=n+n(n-1)t(2) (c~= 0, 2) 

NI(1, 2; G9)= n2t(1) 

N~(1,2;Gs)=l+(n-1)t(2) (~=0,  2) 

NI(1, 2; Gs)=nt(1) 

X~(1, 2; G7)= 1 + 2 ( n -  1) t (2)+ ( n -  1)2[t(2)] 2 

Xl( l  , 2; G7) = n2[t(l )12 

No(l, 2; 66 )=  1 + (n - 1)[t(2)] 2 

N,(1, 2; G6)= t(1) + (rt - 1) t(1) t(2) 

N2(1, 2; G6) = 2t(2) + (n - 2)[t(2)]  2 

No(l, 2; Gs)=  1 + ( n -  1) t(2) + ( n -  1)It(2)] 2 

+ (n -- 1)2[t(2)33 + n2[t(1)]3 

N,(1, 2; G5)= t ( 1 ) + 2 ( n -  1) t(1) t (2)+nFt(1) ]  2 

+n(n- 1)I-t(1)12 t (2 )+  ( n -  1) 2 t(1)[t(2)] 2 

(~ = 0, 2) 
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(5.3b) 

(5.4a) 

(5.4b) 

(5.5a) 

(5.5b) 

(5.6a) 

(5.6b) 

(5.7a) 

(5.7b) 

(5.7c) 

(5.8a) 

(5.8b) 

N2(1, 2; Gs) = 2t(2) + (3n - 4 ) [ t ( 2 ) ]  2 + (n - 1)(n - 2 ) [ t (2 ) ]  3 + n2[ t (1) ]  3 

(5.8c) 

No(l, 2; G4)= 1 + n i t ( i ) ] 2 +  ( n -  1)It(2)] 2 

NI(1 , 2; G4)=2t(l)+2(n- 1)t(1) t (2)  

N2(1, 2; G4) = 2t(2) + nit(1 )]2 + (n - 2)[t(2)12 

Combining the above expresions together with 
reduction equation of Section 4, we get that 

No(l, 2; 61) = 1 + nit(1 ) 1 4  + (F/ - -  1)[t(2)14 

NI(1, 2; G1) = 2{ It(1 )32 + (n - 1) I t ( l ) ]  2 It(2)] 2 } 

N2(1, 2; G1) = 2[t(2)]  2 + n i t ( l ) ]  4 + (n - 2)[t(2)]  4 

No(l, 2; G2)= {1 + n i t ( i ) ] 2 +  ( n -  1)[t(2)]2} 2 

N1(1, 2; G2)=4[ t (1)12{1+ ( n -  1)t(2)} 2 

N2(1, 2; G2) = {2t(2) + nit(1 )]2 + (n - 2)[t(2)12 } 2 

(5.9a) 

(5.9b) 

(5.9c) 

the appropriate graph 

(5.10a) 

(5.10b) 

(5.1Oc) 

(5.11a) 

(5.11b) 

(5.11c) 
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N~(1, 2 ; e s ;G3)=  1 + 2 ( n -  1)[t(2)]Z+n2[t(1)]  4 

+ ( n -  1)2[t(2)] 4 (5.12a) 

N~(1, 2;e 5; G 3 ) = Z [ t ( 1 ) ] 2 + 4 ( n -  1)[t(1)]2 t(2) 

+ 2(n -- 1)2[t(1)]2[t(2)]2 (5.12b) 

N~(1, 2; e5 ; G3) = 4[t(2)] 2 + 4(n - 2)[t(2)] 3 + n2[t(1)] 4 

+ (n -- 2)2[-t(2)] 4 (5.12c) 

Combining Eqs. (5.10) (5.12) with the effective break-collapse equation for 
f =  es, namely [see Eq. (4.10a)] 

N~(1, 2; G) = [1 - t(2)] N~(1, 2; G1) + t(1) N~(1, 2; G2) 

~v~(1 2; es, G3) + [ t ( 2 ) - t ( 1 ) ] . . ~ ,  , �9 (5.13) 

we finally arrive at the flow vector of G: 

U0(1, 2; G)=  1 + 2 n [ t ( 1 ) ] 3 + Z ( n -  1)[t(2)] 3 

+ n[t(1)]4 + ( n -  1)[t(2)] 4 

+ ( n -  1 ) (n -  2)[t(2)35 + 2 n ( n -  1)[t(1)]3[t(2)] 2 

+ n ( n -  1)I t ( l ) ]  4 t(2) (5.14a) 

N1(1, 2; G ) = 2 [ t ( 1 ) ] z + 2 [ t ( 1 ) ] 3  + 6 ( n _  1)[t(l)]2[t(2)]2 

+ 2(n - 1)(n - 2)[t(1)]z[t(2)]  3 

+ 4 ( n - 1 ) [ t ( 1 ) ] 3 t ( 2 ) + 2 ( n - 1 ) z [ t ( 1 ) ] 3 [ t ( 2 ) ]  2 (5.14b) 

N2(1, 2; G) = 2[t(2)] 2 + 2[t(2)] 3 + nit(1 )]4 

+ 5(n - 2)[t(2)] 4 + 4ni t(I)]3 t(2) 

+ 2n(n - 2)[t(1)]3[t(2)] 2 

+ n ( n - 1 ) [ t ( 1 ) ] a [ t ( 2 ) ] + ( n - Z ) ( n - 3 ) [ t ( 2 ) ]  5 (5.14c) 

Combining Eqs. (5.14) with the definitions of t(1) and t(2) [Eqs. (3.3)], 
one obtains an equivalent vector transmissivity which has effective coupling 
constants Keff and Lo~ equal to the respective renormalized coupling 
constants K'  and N L '  of Tsallis et al. (1~ 

Notice that Eqs. (5.14) recover, for all the particular cases considered 
in Section 4.5, the expected results (see PF3 and ref. 13). 
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6. C O N C L U S I O N S  

We have generalized to the n-component cubic model the subgraph 
break-collapse method (SBCM) of the Potts model which we presented 
elsewhere. While in the latter model the equivalent transmissivity was a 
scalar, it becomes a two-dimensional vector for all values of n in the cubic 
model. The effective break-collapse equation involves also, besides the 
broken and collapsed graphs which appear in the Ports model, a graph 
with an edge on which the value of the flow is even. We have called the 
latter an even frozen edge. 

Our graph reduction equations were derived from those we developed 
recently for the Z(2) model. However, the SBCM algorithm for the cubic 
model differs from that for the Z(2n) in the following aspects: (i) it 
contains graphs with even frozen edges instead of frozen edges having fixed 
flows; (ii) its effective break-collapse equation generates only three flow 
vectors for all values of n instead of ( 2 n - 1 ) ;  (iii) it gives the equivalent 
vector transmissivity as a function of n rather than for a fixed value of n; 
(iv) it requires more iterations, since the terminal condition refers to graphs 
with all edges even frozen rather than a number of frozen edges equal to 
the number  of independent cycles. 

An even frozen edge is equal, for n = 2, to the precollapsed edge which 
appears in the break-collapse method (BCM) for the Z(4) modelJ  TM In this 
case, our algorithm becomes similar to the BCM, but with the important  
difference that we include nonreducible subgraph replacements. 
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